4.4 仮想的な擁壁に作用する荷重

5m:

4.4.1 試行くさび法による背面土圧

D	W2∙si	$n(\omega - \phi s) - c s \cdot Ls \cdot cos \phi s$	
г к ⊶		$\cos(\omega - \phi s + \alpha 0 - \delta) = 0.000 \ (kn/m)$	
	₽A	:背面土圧合力	
	W2	🗄 土くさびの自重(上載荷重含む) = W+Wq = 73.343 (kN/m)	
	W	■ 土くさびの自重 = 73.343 (kN/m)	
	Wq	- 裏込め土上の載荷重 = 0.000 (kN/m)	
	ω	:すべり緑と水平面のなす角度 = 57.036(゜)	
	α0	:壁面と鉛直面のなす角 = 30.964 (°)	
	γs	・裏込め土の単位体積重量 = 15.8 (kN/m ²)	
	φs	: 裏込め土のせん断抵抗角 = 28.6 (°)	
	c S	裏込め土の粘着力 = 19.20 (kN/m²)	
	δ	- 仮想背面の壁面摩擦角 == 28.6 (°)	
	LS	: すべり線の長さ = 15.860 (m)	
	ho	: すべり基準高さ = 0.000 (m)	
	z	:粘着高 — 4.093 (m)	
		$z = (2 c s/\gamma s) \cdot tan(45^{\circ} + \phi s/2)$	
	R	:すべり面に作用する反力 = −219.831 (kN/m)	
	PAH	:土圧Pの水平方向成分 = ΡΑ·cos(δ-α0) = 0.000 (kN/m)	
	PAV	:土圧Pの鉛直方向成分 = PA·sin(δ-α0) = 0.000 (kN/m)	
	Yр	:X方向土庄作用位置 = 14.680 (m)	
	Хр	:Y方向土圧作用位置 = 5.800 (m)	

4.4.2 仮想的な擁壁の底面に作用する荷重計算

	鉛直荷量	作用位置	モーメント	水平荷重	作用位置	モーメント	
作用荷重	V	X	Мх	н	Y	My	
	(kN/m)	(m)	(kN·m/m)	(kN/m)	(m)	(kN·m/m)	
仮想擁壁の自重	3079, 104	10, 820	33315, 905	0.000	0.000	0. 000	
土圧	0.000	14.680	0.000	0.000	5.800	0.000	
合 計	3079, 104	_	33315.905	0.000		0.000	
仮想擁壁上の活荷重	70.000	_	—	_	—		

۰.

4.5 滑動に対する安定の検討

	$r \cdot LB + \mu$	$\cdot \Sigma V \rightarrow F_{52}$
FS — -	Σн	i r sa
EZE,	Fs	: 滑動に対する安全率
	Fsa	: 滑動に対する設計安全率 = 1.50
	Σ∨	:仮想的な擁壁の底面における全鉛直荷重 = 3079.104 (kN/m)
	ΣН	:仮想的な擁壁の底面における全水平荷重 = 0.000 (kN/m)
	LB	:仮想的な擁壁の底面幅 ≕ 11.200 (m)
	с	:仮想的な擁壁の底面と基礎地盤との粘着力(kN/m²)
	μ	:仮想的な擁壁の底面と基礎地盤との摩擦係数
	α1	: 補正係数 = 0.0 [砂または砂質土(φ 材)]
		0.5 [砂質土(c φ 材)または粘性土]
	α2	:補正係数 = 1.0
	ϕ :	:盛土材料のせん断抵抗角 = 28.6(゜)
	φ2	: 基礎地盤のせん断抵抗角 = 40.3(゜)
	c 1	:盛土材料の粘着力 = 19.20 (kN/m²)
	c 2	: 基礎地盤の粘着力 = 10.00 (kN/m²)

項目	c	μ	Fs	判定
盛土材料	c1 = 19.20	$\tan\phi 1 = 0.545$	00	0
基礎地盤	$c_2 = 10.00$	$\tan \phi 2 = 0.848$	00	0
盛土材料とジオテキスタイル	α ici = 9.60	$\alpha 2 \tan \phi 1 = 0.545$	00	0
基礎地盤とジオテキスタイル	$\alpha_{1c2}=5.00$	$\alpha 2 \tan \phi 2 = 0.848$	00	0

4.6 転倒に対する安定の検討

4.6.1 仮想的な擁壁のつま先から合力Rの作用点までの距離

$$d = \frac{\Sigma MR - \Sigma Mo}{\Sigma V} = 10.820 (m)$$

ここに、d 仮想的な擁壁のつま先から合力Rの作用点までの距離(m)
 ΣMR つま先まわりの抵抗モーメント = 33315.905 (kN·m/m)
 ΣMo つま先まわりの転倒モーメント = 0.000 (kN·m/m)
 ΣV 仮想的な擁壁の底面における全鉛直荷重 = 3079.104 (kN/m)

4.6.2 仮想的な擁壁底面中央からの偏心距離

• =
$$\frac{LB}{2}$$
 - d = -5.220
• $\leq \frac{LB}{6}$ = 1.867 ・・・ 満足している

4.7 支持力(盛土直下)に対する安定の検討

4.7.1 仮想的な擁壁の基礎地盤面に作用する鉛直地盤反力度

4.7.2 基礎地盤の極限支持力度

 $qu = \alpha \cdot \kappa \cdot c \cdot Nc \cdot Sc + \kappa \cdot q \cdot Nq \cdot Sq + (1/2) \cdot \gamma 1 \cdot \beta \cdot Be \cdot Nr \cdot Sr = 5208.88 \ (kN/m^2)$

ここに、	qu	;基礎地盤の極限支持力度(kN/m²)
	с	:基礎地盤の土の粘着力 = 10.0 (kN/m ²)
	q	:上載荷重 = γ2・Df = 0.00 (kN/m²)
	r 1	: 支持地盤の土の単位体積重量 = 19.7 (kN/m³)
	Y 2	:根入れ地盤の土の単位体積重量 = 19.7 (kN/m³)
	Df	:基礎の有効根入れ深さ = 0.000 (m)
	α, β	:基礎の形状係数 = 1.0
	Be	: 基礎の有効載荷幅 😑 LB = 11.200 (m)
	κ	:根入れ効果に対する割増し係数
		$\kappa = 1 + 0.3 \cdot Df' /Be = 1.000$
	Df'	: 支持地盤と同程度良質な地盤に根入れした深さ = 0.000 (m)
	φ	:基礎地盤のせん断抵抗角 = 40.3(゜)
	tanθ	:荷重の傾斜 = 0.000
	No	:支持力係数 = 77.760
	Ng	:支持力係数 = 66.940
	Nr	:支持力係数 = 89.870
	Sc	: 支持力係数の寸法効果に関する補正係数 == (c*) ^λ == 1.000
	Sq	:支持力係数の寸法効果に関する補正係数 = (q*) ^ν = 1.000
	Sr	:支持力係数の寸法効果に関する補正係数 = (B*)* = 0.447
	λ,ν,μ	:係数 = -1/3
	с*	$c^* = c/c_0 = 1.000$ $ccic, 1 \le c^* \le 10$ $c^* = 1.000$
	c 0	$: 10 (kN/m^2)$
	q*	$z q^* = q/q_0 = 0.000$ ZEIE, $1 \le q^* \le 10$ $\therefore q^* = 1.000$
	qO	: 10 (kN/m²)
	В*	$: B^* = Be/Bo = 11,200$ $\Box \Box \Box \Box, 1 \le B^*$ $\therefore B^* = 11,200$
	Bo	:1.0 (m)

24

4.7.3 基礎地盤の支持力検討

q≦q	a ≕ -	<u>qu</u> = 1736.29 ・・・ 満足している Fs
ここに,	q	:仮想的な擁壁の基礎地盤面に作用する鉛直地盤反力度 = 281.17 (kN/m²)
	d 3	:基礎地盤の許容支持力度(kN/m ²)
	qu	: 基礎地盤の極限支持力度 = 5208.88 (kN/m²)
	Fs	☆ 地盤の支持に対する安全率 = 3,00

5. 外的安定の検討【地震時の場合】

5.1 仮想的な擁壁に作用する荷重

5m:

5.1.1 試行くさび法による背面土圧

W2E•s	$ec\theta \cdot sin(\omega E - \phi s + \theta) \rightarrow cs \cdot LSE \cdot cos\phi s$ = 76 sol (141/-)
	$\cos(\omega E - \phi s + \alpha 0 - \delta E) = 70.891 (KN/m)$
PAE	背面土压合力
W2E	: 土くさびの自重(上載荷重含む) = W+Wq = 1395.654 (kN
W	:土くさびの自重 = 1395.654 (kN/m)
Wq	:裏込め土上の載荷重 = 0.000 (kN/m)
ωE	:すべり線と水平面のなす角度 = 38.596(゜)
α0	: 壁面と鉛直面のなす角 = 30.964 (°)
γs	- 裏込め土の単位体積重量 = 15.8 (kN/m ²)
φs	:襄込め土のせん断抵抗角 = 28.6(゜)
c S	- 裏込め土の粘着力 = 19.20 (kN/m²)
δE	仮想背面の壁面摩擦角 = 28.6(゜)
L SE	すべり線の長さ = 21.331 (m)
К h	設計水平震度 = 0.20
ν	:設計水平震度の補正係数 = 0.70
θ	∴地震合成角 = tan¹(kh・ν) = 7.970 (°)
ho	: すべり基準高さ = 0.000 (m)
z	:粘着高 = 4.093 (m)
	$z = (2 c s/\gamma s) \cdot tan(45^\circ + \phi s/2)$
RE	すべり面に作用する反力 = 1160.960 (kN/m)
PAEH	土圧Pの水平方向成分 = ΡΑΕ·cos(δΕ-α0) = 76.825 (kN
PAEV	土圧Pの鉛直方向成分 = PAE・sin(δE−α0) = -3.171 (kN
Yр	:X方向土圧作用位置 == 14.680 (m)
Хр	: Y方向土圧作用位置 = 5.800 (m)

5.1.2 仮想的な擁壁の底面に作用する荷重計算

	鉛直荷重	作用位置	モーメント	水平荷重	作用位置	モーメント
作用荷重	V	X	Mtx	н	Y	Му
	(kN/m)	(m)	(kN·m/m)	(kN/m)	(m)	(kN·m/m)
仮想擁壁の自重	3079.104	10. 820	33315.905	431.075	8, 700	3750. 349
土庄	-3. 171	14.680	⊷46.554	76, 825	5, 800	445, 586
合 計	3075, 933		33269, 351	507.900		4195, 935
仮想擁壁上の活荷重	0.000	-				

5.2 滑動に対する安定の検討

$$Fs = \frac{c \cdot LB + \mu \Sigma VE}{\Sigma HE} \ge Fsa$$

ここに、Fs 計論に対する安全率

Fsa	: 滑動に対する設計安全率 = 1.20
ΣVΕ	- 仮想的な擁壁の底面における全鉛直荷重 = 3075.933 (kN/m)
ΣΗΈ	- 仮想的な擁壁の底面における全水平荷重 = 507.900 (kN/m)
LB	:仮想的な擁壁の底面幅 = 11.200 (m)
с	一仮想的な擁壁の底面と基礎地盤との粘着力(kN/m ²)
μ	・仮想的な擁壁の底面と基礎地盤との摩擦係数
α1	: 補正係数 = 0.0 [砂または砂質土(φ 材)]
	0.5 [砂質土(cφ 材)または粘性土]
α2	:補正係数 = 1.0
ϕ_1	:盛土材料のせん断抵抗角 = 28.6(゜)
φ2	:基礎地盤のせん断抵抗角 = 40.3 (°)
c1	盛土材料の粘着力 = 19.20 (kN/m ²)
c 2	- 基礎地盤の粘着力 = 10.00 (kN/m ²)

項目	С	μ	Fs	判定
盛土材料	ct = 19.20	$\tan\phi 1 = 0.545$	3. 725	0
基礎地盤	c 2 = 10.00	$\tan\phi 2 = 0.848$	5. 357	0
盛土材料とジオテキスタイル	と材料とジオテキスタイル α1c1 = 9.60		3. 514	0
基礎地盤とジオデキスタイル	$\alpha 1 c 2 = 5.00$	$\alpha 2 \tan \phi 2 = 0.848$	5. 246	0

5.3 転倒に対する安定の検討

5.3.1 仮想的な擁壁のつま先から合力Rの作用点までの距離

$$d = \frac{\Sigma MR - \Sigma Mo}{\Sigma VE} = 9.452 (m)$$

ここに、d : 仮想的な擁壁のつま先から合力Rの作用点までの距離(m) ΣMR : つま先まわりの抵抗モーメント = 33269.351 (kN·m/m) ΣMo : つま先まわりの転倒モーメント = 4195.935 (kN·m/m)

ΣVE : 仮想的な擁壁の底面における全鉛直荷重 = 3075.933 (kN/m)

5.3.2 仮想的な擁壁底面中央からの偏心距離

e =
$$\frac{LB}{2}$$
 - d = -3.852
e $\leq \frac{LB}{3}$ = 3.733 ··· 満足している
ここに、e : 仮想的な擁壁底面中央からの偏心距離 (m)
d : 仮想的な擁壁のつま先から合力尺の作用点までの距離 = 9.452 (m)
LB : 仮想的な擁壁の底面幅 = 11.200 (m)

5.4 支持力(盛土直下)に対する安定の検討

5.4.1 仮想的な擁壁の基礎地盤面に作用する鉛直地盤反力度

5.4.2 基礎地盤の極限支持力度

 $q \, uE = \alpha \cdot \kappa \cdot c \cdot Nc \cdot Sc + \kappa \cdot q \cdot Nq \cdot Sq + (1/2) \cdot \gamma \, 1 \cdot \beta \cdot Be \cdot Nr \cdot Sr = 5208.88 \ (kN/m^2)$

ここに,	q UE	基礎地盤の極限支持力度(kN/m²)
	с	- 基礎地盤の土の粘着力 = 10.0 (kN/m ²)
	q	上載荷重 = γ2・Df = 0.00 (kN/m ²)
	y 1	:支持地盤の土の単位体積重量 = 19.7 (kN/m ³)
	γ2	- 根入れ地盤の土の単位体積重量 = 19.7 (kN/m³)
	Df	- 基礎の有効根入れ深さ = 0.000 (m)
	α, β	■基礎の形状係数 = 1.0
	Be	- 基礎の有効載荷幅 - LB = 11.200 (m)
	κ	根入れ効果に対する割増し係数
		$\kappa = 1 + 0.3 \cdot D f' / Be = 1.000$
	Df	: 支持地盤と同程度良質な地盤に根入れした深さ = 0.000 (m)
	φ	- 基礎地盤のせん断抵抗角 = 40.3(゜)
	tan 0	荷重の傾斜 = 0.000
	Nc	:支持力係数 = 77.760
	Niq	· 支持力係数 = 66.940
	Nr	· 支持力係数 = 89.870
	Sc	:支持力係数の寸法効果に関する補正係数 $=$ (c^*) $^{\lambda}$ $=$ 1.000
	Sq	:支持力係数の寸法効果に関する補正係数 = (q*) ^ν = 1.000
	Sr	:支持力係数の寸法効果に関する補正係数 = (B [*])" = 0.447
	λ,ν.μ	:係数 = −1/3
	c*	$1 c^* = c/co = 1.000$ $ZZIC, 1 \le c^* \le 10$ $\therefore c^* = 1.000$
	c 0	$10 (kN/m^2)$
	q *	$a^*=a/a^0 = 0.000$ $a^*=1.000$ $a^*=1.000$
	q٥	10 (kN/m ²)
	B*	$B^*=Be/Bo = 11,200$ $CC(C, 1 \le B^*)$ $\therefore B^* = 11,200$
	Во	:1.0 (m)

5.4.3 基礎地盤の支持力検討

qE≦ (q 8E 😑 -	quE FsE = 2604.44 ・・・ 満足している			
ರವೇರ,	qE	: 仮想的な擁壁の基礎地盤面に作用する鉛直地盤反力度	=	274. 64	(kN/m²)

q aE : 基礎地盤の許容支持力度 (kN/m²)

que: :基礎地盤の極限支持力度 = 5208.88 (kN/m²)

÷

FSE : 地盤の支持に対する安全率 = 2.00

6. 補強時の全体安定の検討【常時の場合】

- 6.1 計算式
 - 6.1.1 定着部の引抜抵抗力の計算式

【ジオテキスタイルと土の摩擦係数が引抜き試験などで求められない場合】

$$Tp = \frac{2 (\alpha_{1c} + \alpha_{2}\sigma_{v} \cdot tan\phi) Le}{Ee}$$

【ジオテキスタイルと土の摩擦係数が引抜き試験などで求められている場合】

6.1.2 ジオテキスタイルの発揮可能引張強さの計算式

Tavail = min (TA, Tp)

- ここに、Tavail :ジオテキスタイルの発揮可能引張強さ(kN/m)
 TA :ジオテキスタイルの設計引張強さ(kN/m)
 - Tp : 定着部の引抜抵抗力 (kN/m)

6.1.3 補強土壁の全体安定に対する計算式

 $Fs = \frac{R\Sigma \{c \mid t + (W'\cos\alpha + Tavailsin\theta) \tan\phi + Tavailcos\theta\}}{Ps}$

–		$R\Sigma(Wsin\alpha)$
a zia,	F٥	:円弧すべりに対する安全率
	1	- 分割片で切られたすべり線の弧長 (m)
	W	:分割片の土塊重量(kN/m)
	W'	:浮力を考慮した分割片の土塊重量 (kN/m)
	α	各分割片で切られたすべり線の中点とすべり円中心を結ぶ
		直線と鉛直線とのなす角度(゜)
	c	:土の粘着力 (kN/m ²)
	φ	:土のせん断抵抗角(°)
	R	まべり円弧の半径 (m)
	Tavail	- 各ジオテキスタイルの引張力 (kN/m)
	θ	ジオテキスタイル位置でのすべり線の交点とすべり円中心を結ぶ
		直線と鉛直線とのなす角度(°)

6.2 全体安定の検討 [常時 - 1]

6.2.1 円弧すべり形状

10m:

位置 L Тp ΤA Tavail σv Lе h (kN/m^2) (kN/m)(kN/m)(kN/m) (m) 番号 (m) (m) 10,000 0.000 -9.400 1.500 0,000 29 0.600 0.000 0.000 1.500 0.000 10.000 0.000 -9.815 28 1.800 0.000 10.000 0.000 -10.154 1.500 0.000 3,000 27 0.000 0.000 10.000 26 4,200 0.000 -10.413 1.500 0.000 5.400 0.000 -10.587 1.500 0.000 10.000 25 10.000 0.000 1.500 0.000 6.600 0,000 -10.66824 0.000 10.000 1.500 0.000 23 7.800 0.000 -10.646 0.000 -10.508 1.500 0.000 10.000 0.000 9.000 22 0.000 10.000 -10.235 1.500 0.000 10.200 0.000 21 0.000 10.000 0.000 11.400 0.000 -9,800 1.500 20 10.000 1.500 0.000 0.000 12.600 0.000 -9, 161 19 0.000 10.000 0.000 0.000 -8, 250 1.500 18 13.800 0.000 10.000 17 15.000 0.000 -6.931 1.500 0.000 1.500 0.000 10.000 0.000 0.000 -4.862 16.200 16 30,000 0.000 10.400 0.000 15 1.200 0.000 -0.717 0.000 -0.294 11.200 0.000 30,000 0.000 2.400 14 30,000 0.000 11.200 0.000 13 3.600 0.000 ~0.594 0.000 11.200 0.000 30.000 0.000 -0.811 12 4.800 30.000 0.000 0.000 -0.940 11.200 0.000 11 6.000 37.000 0,000 0.000 -0.971 11.200 0.000 7.200 10

6.2.2 ジオテキスタイルの引張強さの計算

9	8,400	0.000	-0. 893	11.200	0.000	37,000	0.000
8	9.600	0.000	-0. 690	11.200	0.000	37.000	0.000
7	10.800	0.000	-0.340	11.200	0.000	49.000	0.000
6	12.000	189.600	0. 191	11.200	21.555	49.000	21.555
5	13.200	208.560	0. 954	11.200	117.688	49.000	49.000
4	14.400	227.520	2. 046	11, 200	273. 390	49,000	49,000
3	15.600	246. 480	3. 668	11.200	528, 196	60.000	60.000
2	16.800	209.137	6. 516	11.200	805, 565	60, 000	60,000
1	17.400	0.000	0.000	11, 200	0, 000	60,000	0, 000
						ΣTavai	= 239.555

6.2.3 補強時の安全率一覧表

上段は安全率,下段()内は不足抵抗力(kN/m)

	-			田中	心 X 。	座楔		
	t s	-0. 30m	-0. 20m	-0, 10m	0.00m	0.10m	0. 20m	0. 30m
	24.00	1.389	1. 385	1.418	1, 441	1.513	1, 556	1, 596
	21.80m	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0.0)
H	01.70-	1.390	1, 386	1, 383	1. 428	1, 490	1.536	1, 578
	21. /Um	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)
中	01 60-	1.390	1.388	1.384	1.409	1, 477	1, 514	1.559
	21. 60m	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0, 0)
N.	01 50-	1.388	1.389	1.385	1.382	1, 463	1.490	1, 538
		(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0.0)	(0, 0)
Y	01 40-	1.387	1, 390	1, 387	1. 383	1, 441	1, 475	1.516
-	21.40m	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0.0)	(0.0)
歴	01.00	1.389	1.389	1.388	1. 384	1, 424	1, 460	1, 491
-105	21.30m	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
保	01.00-	1.392	1.389	1.389	1.386	1, 425	1.432	1, 472
	21. 20m	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0.0)

6.2.4 補強土壁の円弧すべり安定計算結果

()内は設計値

項目	記号	単位	常時
最小安全率	Fsmin Fsa	—	1, 382 (1, 200)
引張力の合力	ΣTavail	kN/m	239.555
抵抗モーメント	MRC MRF MR MT	kN·m∕m	12238, 207 28377, 733 40615, 940 5785, 108
起動モーメント	MD	kN•m/m	33567.977
円中心×座標 ×座標	Xo Yo	M	0.000 21.500
通過点×座標 Y座標	X P Y P	n	0.000 0.000
半径	R	m	21.500

6.3.1 円弧すべり形状

10m: 🛌

6.3.2 ジオテキスタイルの引張強さの計算

-							
位置	h	σν	Le	L	Τp	ΤA	Tavaii
番号	(m)	(kN/m²)	(m)	(m)	(kN/m)	(kN/m)	(kN/m)
29	0. 600	0.000	-3, 327	1.500	0. 000	10,000	0,000
28	1.800	0.000	-3.575	1.500	0. 000	10.000	0. 000
27	3, 000	0.000	-3.654	1.500	0. 000	10,000	0.000
26	4, 200	0.000	-3.529	1.500	0. 000	10.000	0,000
25	5. 400	0.000	-3, 133	1.500	0. 000	10.000	0.000
24	6. 600	0.000	-2.326	1.500	0. 000	10,000	0, 000
23	7. 800	0.000	~0.649	1.500	0. 000	10.000	0.000
22	9.000	0.000	0.000	1.500	0, 000	10.000	0, 000
21	10, 200	0.000	0.000	1.500	0. 000	10.000	0, 000
20	11, 400	0.000	0,000	1.500	0. 000	10.000	0.000
19	12.600	0.000	0.000	1.500	0. 000	10.000	0.000
18	13.800	0.000	0.000	1.500	0.000	10.000	0.000
17	15.000	0.000	0.000	1.500	0.000	10.000	0.000
16	16.200	0.000	0.000	1.500	0.000	10.000	0.000
15	1.200	18.960	5,430	10.400	108. 256	30, 000	30, 000
14	2. 400	37.920	6.063	11.200	183. 555	30, 000	30, 000
13	3, 600	56.880	6,080	11.200	246. 921	30,000	30, 000
12	4, 800	75. 840	6.329	11.200	322. 463	30, 000	30.000
11	6,000	94.800	6,904	11.200	423. 135	30.000	30, 000
10	7. 200	113.760	8.040	11.200	575.850	37.000	37.000

9	8,400	0.000	0.000	11.200	0,000	37.000	0, 000
8	9, 600	0.000	0, 000	11 200	0, 000	37,000	0.000
7	10, 800	0, 000	0.000	11.200	0.000	49, 000	0.000
6	12.000	0.000	0.000	11.200	0.000	49.000	0.000
5	13. 200	0.000	0, 000	11, 200	0.000	49.000	0.000
4	14, 400	0.000	0.000	11.200	0, 000	49,000	0,000
3	15, 600	0.000	0.000	11, 200	0.000	60, 000	0.000
2	16.800	0.000	0.000	11.200	0. 000	60, 000	0.000
1	17.400	0.000	0.000	11_200	0, 000	60, 000	0.000
						Στavai	= 187.000

6.3.3 補強時の安全率一覧表

上段は安全率、下段()内は不足抵抗力(kN/m) 円中 NX 座標 Fs 3.70m 3.80m 3.90m 4.00m 4.10m 4. 20m 4.30m 1.990 1,990 1,990 1.991 1.992 1,993 1.995 20. 70m (0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)円 1.991 1.990 1.990 1.991 1.992 1.990 1.994 20. 60m (0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)ф 1.990 1.991 1.990 1.990 1.990 1.991 1.993 20. 50m (0, 0)(0, 0) (0, 0)(0, 0)(0, 0)(0, 0)(0, 0)心 1.992 1.991 1.990 1.990 1.990 1.991 1.992 20.40m (0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)Y 1.992 1,991 1.990 1.990 1.990 1.990 1.991 20. 30m (0, 0) (0, 0) (0, 0)(0, 0)(0, 0)(0.0) (0, 0) 塺 1.993 1.992 1.991 1.990 1.990 1,990 1.991 20. 20m (0, 0)(0, 0)(0, 0)(0.0) (0, 0)(0, 0)(0.0) 標 1.995 1.993 1.991 1.990 1,990 1.990 1.990 20.10m (0, 0) (0, 0)(0, 0) (0.0) (0, 0)(0, 0)(0, 0)

6.3.4 補強土壁の円弧すべり安定計算結果

			()内は設計値
項目	記 号	単位	常時
最小安全率	展小安全率 Fsmin Fsa		1.990 (1.200)
引張力の合力	ΣTavail	kN/m	187.000
抵抗モーメント	MRC MRF MR MI	kN∙m∕m	2999.766 3009.816 6009.582 2222.948
起動モーメント	MD	kN•m/m	4137. 492
円中心×座標 ×座標	X 0 Y 0	m	4, 000 20, 400
通過点×座標 ⊻座標	X P Y P		5,400 9,000
半径	R	m	11.486

6.4 全体安定の検討[常時 - 15]

6.4.1 円弧すべり形状

5m:

6.4.2 ジオテキスタイルの引張強さの計算

位置	h	σv	Le	L.	Тр	ΤA	⊤avail
番号	(m)	(kN/m²)	(m)	(m)	(kN/m)	(kN/m)	(kN/m)
29	0.600	0. 000	-7.167	1.500	0.000	10.000	0.000
28	1,800	0.000	-7. 887	1, 500	0.000	10.000	0, 000
27	3. 000	0, 000	~8.607	1.500	0.000	10, 000	0, 000
26	4, 200	0.000	-9. 325	1, 500	0.000	10, 000	0,000
25	5, 400	0.000	-9.976	1,500	0.000	10.000	0, 000
24	6.600	0.000	-10, 536	1, 500	0, 000	10,000	0, 000
23	7.800	0.000	-11.000	1, 500	0, 000	10.000	0.000
22	9.000	0.000	-11, 364	1.500	0. 000	10,000	0.000
21	10. 200	0,000	-11,621	1, 500	0, 000	10.000	0.000
20	11.400	0, 000	-11, 760	1. 500	0, 000	10.000	0.000
19	12. 600	0, 000	~11.766	1.500	0.000	10,000	0.000
18	13.800	0.000	-11.615	1.500	0.000	10,000	0, 000
17	15.000	0.000	-11.271	1.500	0.000	10, 000	0.000
16	16, 200	0.000	-10.673	1.500	0.000	10.000	0,000
15	1.200	18.960	1. 373	10.400	27. 366	30, 000	27.366
14	2. 400	37, 920	1, 453	11.200	43. 977	30, 000	30.000
13	3, 600	56.880	0. 733	11. 200	29. 752	30, 000	29. 752
12	4. 800	75. 840	0. 038	11.200	1, 946	30,000	1.946
11	6, 000	0.000	-0. 568	11. 200	0.000	30.000	0.000
10	7. 200	0.000	-1.080	11.200	0.000	37.000	0.000

9	8.400	0.000	-1, 495	11.200	0, 000	37.000	0.000
8	9. 600	0.000	-1.807	11. 200	0.000	37.000	0.000
7	10, 800	0.000	-2. 006	11, 200	0.000	49, 000	0. 000
6	12.000	0, 000	-2. 081	11.200	0, 000	49.000	0.000
5	13. 200	0.000	-2. 012	11, 200	0. 000	49.000	0.000
4	14. 400	0,000	-1.770	11. 200	0.000	49.000	0.000
3	15, 600	0.000	-1. 309	11.200	0.000	60.000	0.000
2	16.800	0,000	-0.545	11.200	0, 000	60, 000	0.000
1	17.400	0, 000	0, 000	11.200	0.000	60, 000	0,000
						ΣTava	i = 89.065

6.4.3 補強時の安全率一覧表

上段は安全率, 下段()内は不足抵抗力(kN/m)

	_			円中	心 X	座標		
	FS	2.60m	2.70m	2. 80m	2.90m	3. 00m	3.10т	3. 20m
	10.00-	99.000	99.000	99.000	2. 383	2, 393	2, 402	2.412
	13.80m	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)
H	10 70-	99.000	99.000	99.000	2.378	2. 387	2. 397	2. 407
	13. /Um	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
P	10.00-	99.000	99.000	99,000	2. 372	2. 382	2. 392	2. 402
	13. OUM	(0.0)	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)
Ð	12 50-	99,000	99.000	99,000	2, 366	2, 375	2, 386	2, 396
v	13. DUM	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
Ŷ	12 40-	99,000	99, 000	99, 000	2. 368	2. 372	2, 380	2, 390
ntr	13.40m	(0.0)	(0, 0)	(0.0)	(0.0)	(0, 0)	(0, 0)	(0.0)
/992	10.00-	99,000	99.000	99, 000	2. 369	2. 374	2. 378	2. 384
+0	13.30m	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0. 0)	(0.0)	(0.0)
1衆	12.00-	99.000	99, 000	99,000	2. 371	2.375	2.380	2. 385
	13.2017	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0.0)

6.4.4 補強土壁の円弧すべり安定計算結果

()内は設計値

項目	記号	単位	常時
最小安全率	Fsmin Fsa	—	2, 366 (1, 200)
引張力の合力	ΣTavail	kN/m	89.065
抵抗モーメント	MRC MRF MR MT	kN∙m∕m	22144. 258 42152. 242 64296. 500 771. 268
起勤モーメント	MD	kN•m/m	27504. 255
円中心X座標 Y座標	X o Y o	m	2. 900 13, 500
通過点×座標 Y座標	X P Y P	ħ	11. 200 0. 000
半径	R	m	15. 847

7. 補強時の全体安定の検討【地震時の場合】

- 7.1 計算式
 - 7.1.1 定着部の引抜抵抗力の計算式

【ジオテキスタイルと土の摩擦係数が引抜き試験などで求められない場合】

TpE = $\frac{2(\alpha_{1c} + \alpha_{2}\sigma_{V} \cdot \tan\phi) \text{ LeE}}{2(\alpha_{1c} + \alpha_{2}\sigma_{V} \cdot \tan\phi) \text{ LeE}}$

F sE

【ジオテキスタイルと土の摩擦係数が引抜き試験などで求められている場合】

$$TpE = \frac{2(c*+\sigma vtan \phi*) LeE}{FsE}$$
ここに、TpE : 定着部の引抜抵抗力 (kN/m)
 σv : ジオテキスタイルの定着部に作用する鉛直力 (kN/m)
(計算では定着長Le の中点上の鉛直荷重としている。)
LeE : すべり線より奥のジオテキスタイルの定着長 (m)

7.1.2 ジオテキスタイルの発揮可能引張強さの計算式

Tavail = min (TAE, TpE)

ここに、Tavail : ジオテキスタイルの発揮可能引張強さ (kN/m)
 TAE : ジオテキスタイルの設計引張強さ (kN/m)

T pE : 定着部の引抜抵抗力 (kN/m)

7.1.3 補強土壁の全体安定に対する計算式

	$R \sum \{c \mid f(W' \cos \alpha - khW \sin \alpha) \tan \phi\} + R \sum T avail(\cos \theta + \sin \theta \tan \phi)$							
Fs ≕		Σ (RWsin α + khWyG)						
ここに、	Fs	: 円弧すべりに対する安全率						
	1	- 分割片で切られたすべり線の弧長 (m)						
	w	分割片の土塊重量 (kN/m)						
	W'	浮力を考慮した分割片の土塊重量(kN/m)						
	α	各分割片で切られたすべり線の中点とすべり円中心を結ぶ						
		直線と鉛直線とのなす角度(゜)						
	¢	:土の粘着力 (kN/m ²)						
	φ	: 土のせん断抵抗角(゜)						
	R	:すべり円弧の半径(m)						
	Tavail	:各ジオテキスタイルの引張力(kN/m)						
	θ	ジオテキスタイル位置でのすべり線の交点とすべり円中心を結ぶ						
		直線と鉛直線とのなす角度(゜)						
	kh	:設計水平震度 = 0.20						
	уG	:円弧中心から分割片重心までの鉛直距離(m)						

7.2 全体安定の検討 [地震時 - 1]

7.2.1 円弧すべり形状

5m:_____

7.2.2 ジオテキスタイルの引張強さの計算

位置	h	σv	LeE	L	T p£	T AE	Tavail
番号	(m)	(kN/m²)	(m)	(m)	(kN/m)	(kN/m)	(kN/m)
29	0. 600	0.000	-9.884	1 500	0. 000	10.000	0.000
28	1.800	0, 000	-10, 196	1. 500	0, 000	10.000	0.000
27	3. 000	0, 000	-10. 435	1.,500	0.000	10.000	0.000
26	4, 200	0, 000	-10. 597	1 500	0.000	10,000	0.000
25	5. 400	0.000	-10.674	1. 500	0.000	10.000	0.000
24	6. 600	0, 000	-10, 659	1_500	0.000	10.000	0.000
23	7.800	0.000	-10, 541	1. 500	0.000	10.000	0.000
22	9,000	0. 000	-10.306	1.500	0.000	10.000	0.000
21	10. 200	0. 000	-9.935	1.,500	0.000	10.000	0.000
20	11.400	0. 000	-9.398	1, 500	0.000	10.000	0.000
19	12. 600	0, 000	-8.655	1. 500	0.000	10.000	0.000
18	13.800	0.000	-7.632	1.500	0. 000	10.000	0.000
17	15.000	0, 000	-6. 192	1.500	0.000	10.000	0.000
16	16.200	0, 000	-3. 988	1.500	0.000	10.000	0.000
15	1.200	0. 000	-1. 149	10,400	0.000	45.000	0.000
14	2, 400	0.000	-0, 625	11.200	0.000	45.000	0.000
13	3, 600	0.000	-0. 826	11,200	0.000	45,000	0.000
12	4.800	0.000	-0. 946	11.200	0.000	45.000	0.000
11	6.000	0.000	-0. 979	11,200	0.000	45.000	0.000
10	7. 200	0.000	-0.914	11.200	0.000	55.500	0.000

9	8.400	0.000	-0, 739	11.200	0.000	55, 500	0.000
8	9, 600	0, 000	-0. 439	11.200	0.000	55, 500	0.000
7	10, 800	170, 640	0.011	11.200	1.830	73. 500	1.830
6	12.000	189.600	0.644	11.200	121.258	73. 500	73. 500
5	13. 200	208.560	1.516	11, 200	311.483	73. 500	73, 500
4	14, 400	227. 520	2. 723	11, 200	606. 472	73. 500	73, 500
3	15. 600	236, 032	4. 474	11, 200	1031.059	90, 000	90.000
2	16.800	196, 746	7. 457	11.200	1452. 547	90, 000	90, 000
1	17.400	0.000	0,000	11.200	0.000	90, 000	0.000
-						ΣTavai	= 402. 330

7.2.3 補強時の安全率一覧表

上段は安全率、下段()内は不足抵抗力(kN/m)

	Fa			円中	心 X	座標		
	1.5	-1.70m	-1.60m	-1,50m	-1. 40m	-1.30m	-1.20m	-1.10m
	24 20m	1, 156	1.148	1. 197	1.217	1.232	1.241	1. 243
	24.2011	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
H H	-) 2/1 10m	1, 159	1.152	1, 144	1. 206	1. 223	1.237	1.239
	2.4. 100	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
- 1 -	24 00m	1.163	1.156	1.148	1, 187	1.213	1. 229	1. 236
d.	24.000	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)
ι υ .	23.90m	1. 167	1, 159	1. 152	1. 144	1. 201	1, 220	1. 232
Y	20. 000	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)
	23 80m	1, 171	1.163	1, 155	1, 148	1, 174	1, 209	1. 226
糜	20.000	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
-	23 70m	1.175	1.167	1, 159	1.152	1.144	1, 196	1.216
樏	20.700	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
	23 60m	1, 179	1.171	1, 163	1.155	1.148	1.145	1.205
	20.000	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0.0)	(0.0)

7.2.4 補強土壁の円弧すべり安定計算結果

			()内は設計値
項目	記号	単 位	地震時
最小安全率	Fsmin Fda		1.144 (1.000)
設計水平震度	k h		0. 200
引張力の合力	ΣTavail	kN/m	402.330
抵抗モーメント	MRC MRF MR MT	kN•m/m	13616. 670 26436. 803 40053. 473 10821. 892
起動モーメント	MD	kN•m/m	44470, 858
円中心×座標 ×座標	Xo Yo	M .	-1. 400 23. 900
通過点×座標 ×座標	ХР УР	m	0.000 0.000
半径	R	m	23.941

7.3.1 円弧すべり形状

5m

Tavail T AE 位置 h σv LeE L ΤpE (kN/m)潘号 (kN/m^2) (m) (m) (kN/m) (kN/m)(m) 0,000 1.500 10,000 0.000 0.600 0.000 -9.667 29 1.500 0.000 10.000 0.000 1.800 0.000 -10.02628 1.500 0.000 10.000 0.000 0.000 -10.3093,000 27 0.000 1.500 0.000 10.000 4.200 0.000 -10.50926 0.000 10,000 0.000 25 5.400 0.000 -10.621 1.500 0.000 -10.635 1.500 0.000 10,000 0.000 24 6.600 0.000 1.500 0.000 10,000 7.800 0.000 -10.539 23 0.000 0.000 10.000 9.000 0.000 -10.319 1.500 22 1.500 0.000 10.000 0.000 -9.951 10,200 0.000 21 0.000 0.000 10.000 0.000 -9.402 1.500 20 11.400 10.000 0,000 0.000 -8.619 1.500 0.000 19 12,600 0.000 10.000 0.000 0.000 -7.507 1.500 13,800 18 10.000 0.000 1.500 0.000 0.000 -5.859 17 15,000 0.000 0.000 -2.978 1.500 0.000 10.000 16.200 16 45,000 0.000 -0.956 10.400 0.000 0.000 1.200 15 45,000 0.000 11_200 0.000 14 2.400 0.000 -0.477 -0.719 11_200 0.000 45.000 0.000 3.600 0.000 13 0.000 11.200 0.000 45,000 0.000 -0.876 12 4.800 45.000 0.000 -0.940 11_200 0.000 6.000 0.000 11 55.500 0.000 -0.902 11_200 0.000 7.200 0.000 10

7.3.2 ジオテキスタイルの引張強さの計算

9	8. 400	0.000	-0. 746	11.200	0.000	55, 500	0, 000
8	9.600	0.000	~0. 455	11.200	0, 000	55, 500	0.000
7	10.800	0.000	-0.002	11, 200	0, 000	73, 500	0.000
6	12.000	189.600	0. 655	11.200	123. 404	73. 500	73. 500
5	13. 200	208. 560	1. 587	11.200	326. 198	73. 500	73. 500
4	14. 400	227.520	2. 929	11.200	652, 358	73. 500	73, 500
3	15, 600	228. 764	5. 026	11.200	1125.095	90, 000	90, 000
2	16, 800	0.000	0.000	11.200	0.000	90, 000	0, 000
1	17, 400	0.000	0.000	11.200	0.000	90, 000	0.000
2	2 	6. C. C. C.	00			ΣTavai	= 310.500

7.3.3 補強時の安全率一覧表

上段は安全率,下段()内は不足抵抗力(kN/m)

	-			円中	ŵΧ	座標	G	
	FS	-0. 20m	~0.10m	0. 00m	0.10m	0. 20m	0. 30m	0.40m
	00.00	1.145	1.137	1, 158	1. 196	1.214	1, 224	1. 284
	22.80m	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0.0)
B	00 70-	1.149	1, 141	1. 133	1. 182	1.204	1, 220	1.274
1.	22. /0m	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
щ.	20 E0m	1, 153	1.145	1.137	1, 133	1, 193	1, 212	1, 269
	22, 00m	(0, 0)	(0, 0)	(0.0)	(0.0)	(0, 0)	(0, 0)	(0, 0)
10	00 E0-	1, 157	1, 149	1, 141	1.133	1.178	1, 201	1, 265
v	22. 50/1	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)
Ť	22 40	1. 161	1, 153	1, 145	1, 137	1, 135	1, 189	1, 260
ntr	22. 40m	(0, 0)	(0.0)	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)
19 <u>2</u> ,	10.00-	1.166	1, 157	1.149	1, 140	1.135	1, 173	1, 249
12	22. 30m	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
775		1, 170	1.161	1.153	1.144	1.136	1. 137	1, 237
	22. 20/11	(0.0)	(0. 0)	(0, 0)	(0.0)	(0, 0)	(0.0)	(0, 0)

7.3.4 補強土壁の円弧すべり安定計算結果

()内は設計値

項目	記号	単位	地震時
最小安全率	Fsmin Fda	—	1, 133 (1, 000)
設計水平驚度	kh		0. 200
引張力の合力	ΣTavail	kN/m	310. 500
抵抗モーメント	MRC MRF MR MT	kN•m∕m	12192, 916 23890, 057 36082, 973 7679, 391
起動モーメント	MD	kN•m/m	38630, 020
円中心X座標 Y座標	Xo Yo	m	0. 100 22. 500
通過点×座標 ×座標	XP YP	m	0.360 0.600
半径	R	m	21, 902

7.4 全体安定の検討 [地震時 - 9]

7.4.1 円弧すべり形状

10m;

7.4.2 ジオテキスタイルの引張強さの計算

位置	h	σv	LeE	L	T pE	'T' AE	Tavail
番号	(m)	(kN/m^2)	(m)	(m)	(kN/m)	(kN/m)	(kN/m)
29	0. 600	0.000	-11.287	1, 500	0.000	10.000	0.000
28	1.800	0.000	-10. 797	1,500	0.000	10.000	0.000
27	3, 000	0,000	-10. 121	1,500	0, 000	10.000	0.000
26	4. 200	0, 000	-9. 202	1, 500	0.000	10.000	0.000
25	5. 400	0, 000	-7, 939	1, 500	0.000	10.000	0.000
24	6. 600	0. 000	-6.115	1, 500	0.000	10,000	0.000
23	7.800	0.000	-2. 995	1, 500	0.000	10.000	0.000
22	9, 000	0, 000	0.000	1, 500	0.000	10.000	0.000
21	10, 200	0.000	0.000	1.500	0, 000	10.000	0.000
20	11, 400	0.000	0,000	1.500	0.000	10.000	0.000
19	12. 600	0.000	0,000	1.500	0, 000	10.000	0, 000
18	13. 800	0, 000	0,000	1.500	0.000	10,000	0.000
17	15.000	0.000	0.000	1. 500	0. 000	10.000	0.000
16	16. 200	0.000	0.000	1. 500	0.000	10,000	0.000
15	1. 200	0. 000	-2. 163	10.400	0.000	45.000	0.000
14	2, 400	0.000	-0. 785	11.200	0.000	45.000	0.000
13	3, 600	56.880	0, 003	11.200	0. 237	45, 000	0. 237
12	4, 800	75.840	1.078	11.200	91.496	45, 000	45.000
11	6, 000	94.800	2. 580	11. 200	263. 512	45.000	45.000
10	7. 200	113.760	4. 875	11.200	581.992	55, 500	55, 500

9	8,400	0.000	0.000	11, 200	0,000	55, 500	0.000
8	9, 600	0, 000	0.000	11.200	0.000	55, 500	0.000
7	10.800	0, 000	0.000	11.200	0. 000	73. 500	0, 000
6	12.000	0.000	0,000	11.200	0. 000	73. 500	0.000
5	13.200	0.000	0.000	11.200	0.000	73. 500	0, 000
4	14.400	0.000	0.000	11.200	0, 000	73, 500	0.000
3	15.600	0.000	0, 000	11, 200	0.000	90.000	0.000
2	16, 800	0.000	0.000	11.200	0.000	90, 000	0.000
1	17,400	0.000	0.000	11.200	0.000	90, 000	0.000
			15			ΣTavai	= 145.737

.

7.4.3 補強時の安全率一覧表

上段は安全率,下段()内は不足抵抗力(kN/m) 田中 心X座標 Fs 4.50m 4.70m 4.60m 4.80m 4.90m 5.00m 5.10m 1.723 1.735 1.728 1.737 1.751 1.765 1.778 34, 10m (0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0.0) Ξ 1.738 1.730 1.723 1.731 1.746 1.760 1.773 34.00m (0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)中 1.740 1.733 1.726 1.726 1.740 1.754 1.768 33.90m (0, 0)(0, 0)(0, 0)(0.0) (0, 0) (0, 0) (0, 0)ŵ 1.743 1.736 1.728 1.721 1.735 1.749 1.763 33.80m (0, 0)(0, 0)(0, 0)(0.0) (0, 0) (0, 0)(0.0) Y 1.746 1.738 1.731 1.723 1.730 1.744 1.758 33. 70m (0, 0) (0, 0) (0, 0)(0, 0)(0, 0)(0, 0) (0, 0)座 1.748 1.741 1.733 1.726 1.724 1.739 1.753 33. 60m (0, 0)(0, 0) (0, 0)(0,0) (0.0) (0, 0)(0, 0)標 1.751 1.743 1.736 1.728 1.721 1.733 1.748 33. 50m (0, 0)(0.0) (0, 0)(0, 0)(0, 0) (0, 0)(0, 0)

بدرية الفراقة الارتباد الأراج

7.4.4 補強土壁の円弧すべり安定計算結果

			()内は設計値
項目	記号	単 位	地震時
最小安全率	Fsmin Fda		1.721 (1.000)
設計水平震度	kh		0. 200
引張力の合力	ΣTavail	kN/m	145. 737
抵抗モーメント	MRC MRF MR MT	kN∙m∕m	9739.978 14877.891 24617.869 4087.373
起動モーメント	MD	kN•m/m	16680. 268
円中心×座標 ×座標	X o Y o	m	4.800 33.800
通過点×座標 Y座標	X P Y P	m	5. 400 9. 000
半径	R	m	24. 807

7.5 全体安定の検討 [地震時 - 15]

7.5.1 円弧すべり形状

10m:

7.5.2 ジオテキスタイルの引張強さの計算

位置	h	σv	L eE	L	Τ ρΕ	T' AE	Tavail
番号	(m)	(kN/m^2)	(m)	(m)	(kN/m)	(kN/m)	(kN/m)
29	0.600	0.000	-14. 154	1.500	0.000	10,000	0.000
28	1.800	0.000	~14.558	1.500	0.000	10.000	0.000
27	3, 000	0, 000	-14.895	1.500	0.000	10.000	0.000
26	4. 200	0.000	-15, 159	1.500	0, 000	10.000	0.000
25	5. 400	0.000	-15, 348	1, 500	0, 000	10, 000	0, 000
24	6, 600	0. 000	-15, 455	1, 500	0. 000	10.000	0.000
23	7.800	0.000	-15. 473	1, 500	0, 000	10.000	0.000
22	9,000	0,000	-15. 393	1.500	0.000	10.000	0.000
21	10. 200	0.000	-15, 200	1,500	0. 000	10.000	0.000
20	11.400	0,000	-14. 880	1.500	0. 000	10.000	0.000
19	12.600	0.000	-14, 405	1, 500	0, 000	10,000	0.000
18	13.800	0.000	-13, 741	1, 500	0, 000	10.000	0.000
17	15.000	0. 000	-12.829	1.500	0. 000	10.000	0.000
16	16.200	0.000	-11, 561	1.500	0.000	10.000	0.000
15	1. 200	0.000	-5. 465	10. 400	0.000	45.000	0.000
14	2. 400	0.000	-5. 035	11.200	0.000	45, 000	0.000
13	3. 600	0.000	-5. 336	11.200	0, 000	45, 000	0, 000
12	4.800	0.000	-5. 564	11. 200	0.000	45.000	0.000
11	6.000	0. 000	-5.712	11. 200	0. 000	45.000	0,000
10	7. 200	0, 000	-5. 776	11.200	0.000	55.500	0.000

9	8.400	0.000	~5.746	11,200	0,000	55, 500	0,000
8	9.600	0,000	-5.611	11.200	0.000	55, 500	0, 000
7	10.800	0.000	~5. 357	11,200	0.000	73, 500	0.000
6	12.000	0.000	-4. 964	11.200	0, 000	73, 500	0.000
5	13. 200	0.000	-4. 400	11.200	0.000	73, 500	0.000
4	14. 400	0,000	-3. 621	11.200	0.000	73, 500	0.000
3	15, 600	0.000	-2. 549	11.200	0.000	90, 000	0.000
2	16.800	0.000	-1.030	11.200	0.000	90, 000	0.000
1	17.400	0.000	0.000	11.200	0, 000	90, 000	0.000
	1			·		ΣTava	ai = 0.000

7.5.3 補強時の安全率一覧表

上段は安全率,下段()内は不足抵抗力(kN/m)

Fs				円中	心 X	座標		
		2.10m	2. 20m	2. 30m	2. 40m	2.50m	2. 60m	2.70m
	00.00-	99,000	99.000	99.000	1.808	1, 812	1, 815	1, 818
	ZZ. 60m	(0.0)	(0, 0)	(0.0)	(0.0)	(0, 0)	(0, 0)	(0, 0)
円	00 E0-	99,000	99,000	99.000	1,808	1, 811	1, 815	1, 818
	22. SUM	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
ф.	00.40-	99.000	99.000	99.000	1.808	1.811	1.815	1.818
	22. 40m	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)
L IV	00.00-	99.000	99.000	99,000	1.808	1.811	1, 815	1.818
v	ZZ. JUM	(0, 0)	(0, 0)	(0.0)	(0.0)	(0, 0)	(0, 0)	(0, 0)
Y	00.00-	99.000	99.000	99.000	99.000	1.811	1.815	1, 818
क्र	22. 2013	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0.0)
1992.	00.10-	99.000	99.000	99,000	99, 000	1, 811	1.815	1, 818
100	22. TOm	(0, 0)	(0.0)	(0, 0)	(0, 0)	(0, 0)	(0.0)	(0, 0)
T#	00.00	99,000	99.000	99.000	99.000	1.812	1,815	1.818
	22. UUM	(0, 0)	(0.0)	(0. 0)	(0, 0)	(0, 0)	(0, 0)	(0, 0)

7.5.4 補強土壁の円弧すべり安定計算結果

()内は設計値 記号 単 位 地震時 項目 1.808 Fsmin _ 最小安全率 (1.000)Fda 0.200 設計水平震度 kh ____ kN/m 0.000 引張力の合力 ΣTavail 42131.957 MRC MRF 76277.439 kN∙m/m 抵抗モーメント 118409.396 MR 0.000 MT kN·m/m 65488. 092 MD 起動モーメント 2.400 円中心X座標 Χo m 22.300 Y座標 Yο XP 11,200 通過点X座標 m 0.000 ΥP Y座標 半径 R 23.974 Ш

8. 参考資料

8.1 盛土形状座標データ

成七届来早	土層の1	下端座裸	土庸の上端座標		
运, /霍爾·万	XL (m)	YL. (m)	XU (m)	YU (m)	
盛土層-1	0. 000	0.000	10. 440	17.400	

8.2 基礎地盤座標データ

基礎地盤番号	座標番号	X座標(m)	Y座標(m)
基礎地盤-1	1	-4. 209	-0.745
	2	~2.160	0.000
	3	0.000	0_000
	4	0.603	1.005
	5	4, 440	2,400
	6	15.040	7_400
	7	25.940	12, 400
	8	27. 440	12,400
	9	34, 940	7, 400
	10	36.440	7,400
	11	44. 535	2.004
基礎地盤2	1	18.440	17.400
	2	25. 940	12.400

8.3 掘削形状座標データ

座標番号	掘削幅(m)	掘削高(m)	掘削勾配
1	11.200	5.000	0.60
2	1.000	3. 420	0.60

8.4 設計土層座標データ

土層番号		旧座標番号	新座標番号	X座標(m)	Y座標(m)
盛土層 -1	1	1	1	0.000	0.000
		2	2	10. 440	17.400
		3	3	1044. 535	17, 400
基礎地盤 -2	-1		1	18, 440	10, 400
			2	21.440	15, 400
		2	3	25. 940	12, 400
基礎地盤 -1	-1	1	1	-4. 209	-0. 745
		2	2	-2. 160	0.000
		3	3	0.000	0,000
			4	11, 200	0, 000
			5	14. 200	5.000
			6	15. 200	5.000
			7	17. 248	8, 413

1 1	7	8	25.940	12.400
1 1	8	9	27. 440	12, 400
1 1	9	10	34.940	7.400
1 1	10	11	36. 440	7, 400
	11	12	44. 535	2.004

8.5 設計外力データ

and with and 377, 121	荷重の	左端座標		右端	座標	常時	地震時
載荷重番号	種類	XL(m)	YL(m)	X R (m)	Y 🕅 (m)	W (kN/m)	WE(kN/m)
載荷重 -1	活荷重	10. 940	17.400	17.940	17. 400	10.00	0.00

8.6 壁面強化材データ

(1)	敷設長	:	L		=	1, 500	(m)
(2)	敷設間隔	;	v		=	60.00	(cm)
(3)	盛土底面からの最下段敷設位置	\$	h		=	0, 600	(m)
(4)	設計引張強度	÷	ΤA,	T AE	=	10.00	(kN/m)

8.7 参考文献

- (1) ジオテキスタイルを用いた補強土の設計・施工マニュアル 第2回 改訂版 ジオテキスタイル補強土工法普及委員会(財)土木研究センター 平成25年12月
- (2) 道路土工 擁壁工指針(社) 日本道路協会 平成24年7月
- (3) 道路橋示方書・同解説 Ⅳ下部構造編
 (社)日本道路協会 平成24年3月

ジオテキスタイル補強盛土設計計算書

H=5.50m

平成 28年04月

前田工繊株式会社

はじめに

本計算書は、ジオテキスタイル補強材について検討したものであり、壁面工の安定性の検討や構 造細目については別途検討が必要である。

また、ジオテキスタイル補強材の設計においても「ジオテキスタイルを用いた補強土の設計・施 エマニュアル」に記述された範囲以外の設計条件の場合には、別途検討を要す。 目 次

38

.

1. 設計	针条件1
1.1	計画補強土壁断面および土質材料の設計定数
1.2	ジオテキスタイルの材料 ・・・・・2
t. 3	設計安全率 ••••••••••••••••••••••••••••••••••••
1.4	設計水平震度 ······3
2. 計算	鼻結果の総括・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2. 1	補強材の使用材料および配置 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2. 2	外的安定の検討
2. 3	補強時全体の円弧すべり安定計算6
3. 内的	的安定の検討【常時の場合】・・・・・9
3.1	常時における必要引張力の合計が最大となるすべり円弧の算定 9
3. 2	ジオテキスタイルの引張強さの照査・・・・・・・・・・・・・・・・・・・・・・・12
3. 3	ジオテキスタイルの敷設長の計算・・・・・・14
4. 内的	的安定の検討【地震時の場合】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・15
4. 1	地震時における必要引張力の合計が最大となるすべり円弧の算定
4. 2	ジオテキスタイルの引張強さの照査
4.3	ジオテキスタイルの敷設長の計算 ·····20
5. 外的	的安定の検討【常時の場合】 ・・・・・ 21
5.1	仮想的な擁壁に作用する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5. 2	滑動に対する安定の検討・・・・・・・・・・・・・・・・・・・・・・・・23
5.3	転倒に対する安定の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
5.4	支持力(盛土直下)に対する安定の検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・25
6. 外自	約安定の検討【地震時の場合】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6. 1	仮想的な擁壁に作用する荷重 ·····27
6. 2	滑動に対する安定の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・29
6. 3	転倒に対する安定の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

6.4	支持力 (盛土直下) に対する安定の検討31
7. 補	強時の全体安定の検討【常時の場合】・・・・・・33
7.1	計算式 ・・・・・33
7.2	全体安定の検討 [常時 - 1] 35
7.3	全体安定の検討[常時 - 2] ······37
7.4	全体安定の検討[常時 - 3] ·····39
7.5	全体安定の検討[常時 - 4] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
7.6	全体安定の検討[常時 - 5] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・43
7.7	全体安定の検討[常時 - 6] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
7.8	全体安定の検討[常時 - 11]47
8. 補	強時の全体安定の検討【地震時の場合】・・・・ 49
8. 1	計算式
8. 2	全体安定の検討 [地震時 - 1]
8.3	全体安定の検討 [地震時 - 2] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・53
8, 4	全体安定の検討 [地震時 - 3] ・・・・・・・・・・・・・・・・・・・・・・・・55
8.5	全体安定の検討 [地震時 - 4]57
8.6	全体安定の検討 [地震時 - 5] ・・・・・・・・・・・・・・・・・・・・・・・・59
8.7	全体安定の検討 [地震時 - 6] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
8.8	全体安定の検討 [地震時 - 11] ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・63
9. 参	考資料
9.1	盛土形状座標データ
9.2	基礎地盤座標データ ・・・・・ 65
9.3	掘削形状座標データ65
9.4	設計土層座標データ65
9.5	設計外力データ ・・・・・ 66
9,6	壁面強化材データ ······66
9.7	参考文献 ・・・・・・・・・・・・・・・・・・・・・・・66

1. 設計条件

1.1 計画補強土壁断面および土質材料の設計定数

(1) 計画補強土壁断面形状

- : ⊿S = 20.0 (cm)(「ジオテキスタイルを用いた補強土の設計・施工マニュアル」 に示される補強土壁の仕上がり厚さ) (4) 基本締固め層厚
- (5) 設計外力 : 載荷重なし
- (6) 土質材料の設計定数

中福景早	н	h	r	γ*	с	ca	φ	ľ
上眉蛋白	(m)	(m)	(kN/m³)	(kN/m³)	(kN/m^2)	(kN/m^2)	(°)	
盛土層-6	30. 500	5.000	15.800	15, 800	19.20	-	28.6	(2/6-1) p. 2-
盛土層-5	25. 500	5.000	15.800	15.800	19. 20	_	28.6	2/6-① p. 2-
盛土層-4	20, 500	5, 000	15.800	15.800	19. 20		28.6	2/6-① p. 2-
盛土層-3	15, 500	5. 000	15.800	15.800	19. 20		28.6	2/6-0 0.2-
盛土層-2	10, 500	5, 000	15.800	15, 800	19. 20	1.	28.6	2/6-1 p. 2-
盛土層-1	5, 500	5, 500	15.800	15. 800	19. 20		28.6	2/6-0 p. 2-
基礎地盤-1		_	20. 500	20. 500	215.00	-	36.3	2/6-1 p. 2-

H : 基礎地盤面からの高さ(m) h : 層厚(m)

c (11土の粘着力 (kN/m²)

ca:全体安定の検討で用いる土の粘着力の仮定値(kN/m²)

(7) ジオテキスタイルと土との摩擦補正係数および摩擦応力成分

	摩擦補	正係数	摩擦応力成分		
土層番号	αι α2		c * (kN/m²)	φ* (°)	
盛土層-6	0. 50	1.00	—	_	
盛土層-5	0. 50	1.00		-	
盛土層-4	0.50	1.00	—	—	
盛土層3	0.50	1.00		_	
盛土暦-2	0.50	1.00	—		
盛土層-1	0.50	1.00		_	

α1. α2 ジオテキスタイルと土との摩擦に関する補正係数

 $\alpha 1 = c*/c$ $\alpha_2 = \tan \phi * / \tan \phi$ (計土とジオテキスタイルの見かけの粘着力(kN/m²)

土とジオテキスタイルの見かけのせん断抵抗角(°) **d***

1.2 ジオテキスタイルの材料

с*

材		46 61	材料単価 (円/m ²)	Tmax	材	料3	史 全	牽
No No	料 名称 No	規格		(kN/m)	Fcr	FD	FC	FB
1	ADEAM	HG-36	1, 720	34. 000	1.54	1.00	1.00	1.00
2	ADEAM	HG-50	1,860	47.000	1.54	1.00	1.00	1.00

:ジオテキスタイルの最大引張強さ(kN/m) Tmax

: クリープを考慮した材料安全率 For

For
$$= 1/\mu$$

- : クリープ低減係数 μ
- FD : 耐久性を考慮した材料安全率
- :施工中の損傷を考慮した材料安全率 FC
- : 接合部の強度低下を考慮した材料安全率 FΒ

1.3 設計安全率

安全率の環緒	設計安全率			
	常時	地震時		
引抜きに対する安全率	Fs ≧ 2.00	FsE ≧ 1.20		
滑動に対する安全率	Fs ≧ 1.50	FsE ≧ 1.20		
転倒に対する許容値	e ≦ L/6	e ≦ L/3		
支持力に対する安全率	Fs ≧ 3.00	FsE ≧ 2.00		
全体安定・円弧すべりに対する安全率	Fs ≧ 1.20	FsE ≧ 1.00		

1.4 設計水平震度

(1) 内的安定及び外的安定の検討に用いる設計水平震度

$$\mathbf{k}\mathbf{h} = \mathbf{c}\mathbf{z}\cdot\mathbf{k}\mathbf{h}\mathbf{o} = 0.20$$

÷

(2) 全体安定の検討に用いる設計水平震度

$$kh \approx cz \cdot kho = 0.20$$

2. 計算結果の総括

2.1 補強材の使用材料および配置

材		**		4.17	Tmax	材	材料安		率	TA	T AE
料 No	料 名称 为 No	規	(kN/m)	(kN/m)	For	F۵	FC	FΒ	(kN/m)	(kN/m)	
1	ADEAM		HG-36		34.000	1, 54	1.00	1.00	1.00	22.000	33, 000
2	ADEAM		HG-50		47.000	1, 54	1.00	1.00	1.00	30. 000	45. 000

2.1.1 使用材料の設計引張強さ(常時:TA,地震時:TAE)

2.1.2 ジオテキスタイルの配置

10m:

2.2 外的安定の検討

()内は設計値

75 8	記号	単位	常	時	地震時		
			計算結果	判 定	計算結果	判定	
滑動に対する安定	Fs		∞ (1, 500)	0	4. 575 (1. 200)	0	
転倒に対する安定	ę	m	-1.480 (0.833)	0	-1.026 (1.667)	0	
盤土直下の支持力に 対する安定	q	kN/m²	100.725 (2166.877)	0	100. 725 (2294. 175)	0	

2.3 補強時全体の円弧すべり安定計算

2.3.1 各段の使用材料・敷設間隔・敷設長

位置	材料	天端から 敷設深さ 敷設間隔		引引 丁 (k	長力 N/m)	必要 第 し	使 用 敷設長	
當号	No	h (m)	V (m)	常時	地震時	常時	地震時	L (m)
5	1	0.700	0.700	2. 433	9.068	3.059	4. 649	4. 700
4	1	1.900	1. 200	9, 045	19.580	3.062	4, 285	4. 700
3	1	3, 100	1.200	13.918	23. 615	2.816	3.669	4, 700
2	2	4.300	1, 200	18. 792	27.650	2. 223	2. 683	4. 700
t	2	5, 500	1.200	23.666	31.685	1.000	1.000	4, 700
合計		5, 500						23. 500

必要同長敷設長 = 4.700 (m)

÷

2.3.2 円弧すべり形状

2.3.3 円弧すべり安定計算

L 7	円弧中心	座標	半径	E	-	ماردا ويلغم
7-2	X (m)	Y (m)	R (m)	rsmin	⊢sa	判定
常時-1	0.000	71, 800	71, 800	1. 586	1.200	0
常時~2	3. 900	67. 500	66, 388	1, 632	1. 200	0
常時-3	7.200	63, 900	61,816	1.673	1, 200	0
常時4	10, 100	6 0. 700	57, 753	1, 711	1, 200	0
常時-5	12.600	58, 000	54. 261	1.742	1. 200	0
常時-6	13.900	57. 200	52.697	1, 752	1. 200	0
常時-11	4. 700	63, 100	63.100	1, 597	1.200	0
地震時 -1	0.000	75, 500	75, 500	1, 051	1.000	0
地震時 -2	3, 700	71.500	70. 374	1.076	1.000	0
地震時 -3	7.000	67. 900	65. 778	1. 101	1,000	0
地震時 ~4	9, 900	64, 800	61, 782	1. 123	1.000	0
地震時 -5	12. 500	61.900	58. 072	1.143	1,000	0
地震時 -6	13, 900	60. 800	56. 233	1,150	1.000	0
地震時 -11	4. 700	66. 500	66. 500	1.057	1.000	0

3. 内的安定の検討【常時の場合】

- 3.1 常時における必要引張力の合計が最大となるすべり円弧の算定
 - 3.1.1 計算条件

・最下層盛土ののり尻のポイントを通る円弧とする。

3.1.2 必要引張力の合計の計算式

$$\Sigma \operatorname{Treq} = \frac{\Sigma \operatorname{Wsin} \alpha - \Sigma \operatorname{Wcos} \alpha \tan \phi}{\Sigma \left\{ -\frac{2}{H^2} z \operatorname{b} \tan \theta \left(\cos \theta + \sin \theta \tan \phi \right) \right\}}$$

ここに、ΣTreq 常時のジオテキスタイルの必要引張力の合計 (kN/m)

- φ 土のせん断抵抗角(°)
- α 各分割片で切られたすべり線の中点とすべり円中心を結ぶ
 直線と鉛直線とのなす角度(°)
- θ ジオテキスタイル位置でのすべり線の交点とすべり円中心を結ぶ 直線と鉛直線とのなす角度(°)
- H : 補強土壁の高さ(m)
- z 各分割片で切られたすべり線の中点の盛土天端からの深さ(m)
- b :分割片の幅 (m)

3.1.3 必要引張力の合計が最大となる円弧すべり形状

5m:

3.1.4 必要引張力の合計一覧表

	ΣTreq		円 中 心 X 座 標									
	(kN/m)	-5.30m	-4. 80m	⊶4. 30m	-3. 80m	-3.30m	-2. 80m	-2. 30m				
PJ	8.70m	50. 732	50. 651	49. 852	48. 190	45. 498	41.586	36. 240				
中	8. 20m	50, 382	50, 932	50, 797	49. 827	47.846	44. 651	40. 011				
νÛλ	7. 70m	49. 285	50, 511	51, 094	50. 879	49, 679	47. 278	43. 426				
Y	7. 20m	47.271	49. 222	50, 583	51, 192	50, 854	49. 337	46.370				
座	6. 70m	44. 117	46. 847	49, 051	50, 564	51, 180	50, 652	48.687				
標	6. 20m	39. 524	43. 091	46. 211	48. 715	50, 393	50. 981	50. 158				
	5. 70m	33. 076	37, 542	41.657	45. 256	48, 119	49.971	50. 461				

3.1.5 必要引張力の合計が最大となるすべり円弧の抽出

項目	記号	単位	常時
引張力の最大値	ΣTreq	kN/m	51, 192
抵抗モーメント	MRC MRF MR	kN∙m/m	0.000 410.362 410.362
起動モーメント	MD	kN·m/m	849, 151
円中心×座標 ×座標	X o Y o	m	-3. 800 7. 200
半径	R	m	8. 141

3.2 ジオテキスタイルの引張強さの照査

3.2.1 ジオテキスタイルの設計引張強さ

TA 😐 -	Tma		
	Fcr FD	FC FB	
ここに,	TA	ジオテキスタイルの設計引張強さ(kN/	m)
	Tmax	ジオテキスタイルの最大引張強さ(kN/i	m)
	For	- クリープを考慮した材料安全率	
	FD	: 耐久性を考慮した材料安全率	
	FC	:施工中の損傷を考慮した材料安全率	
	FB	接合部の強度低下を考慮した材料安全国	E

材		1	Tmax	材	ТА			
料 No	名称	規格	(kN/m)	For	FD	F٥	۴B	(kN/m)
1	ADEAM	HG-36	34.000	1.54	1.00	1.00	1.00	22, 000
2	ADEAM	HG50	47.000	1. 54	1.00	1.00	1.00	30.000

3.2.2 ジオテキスタイルの必要引張力の合計に対する増加係数

$$\kappa_{\rm G} = \frac{2\Sigma \, \mathrm{Treq}}{\gamma \, \mathrm{H}^2} = 0.2142$$

ここに、Kg ジオテキスタイルの必要引張力の合計に対する増加係数
 Σ Treq 常時のジオテキスタイルの必要引張力の合計の最大値 = 51_192 (kN/m)
 γ 土の単位体積重量 = 15.8 (kN/m³)
 H 補強土壁の高さ = 5.500 (m)

3.2.3 活荷重およびその他荷重の分布形状:活荷重およびその他荷重なし

3.2.4 ジオテキスタイルの引張強さの照査

V

 $T = v KG (\gamma h + w1 + w2) \leq TA$

ここに、 T 深さhにおけるジオテキスタイルに発生する引張力 (kN/m)

- TA ジオテキスタイルの常時設計引張強さ(kN/m)
- h ジオテキスタイルの盛土天端からの敷設深さ(m)
- v 深さhにおけるジオテキスタイルの分担範囲(m)
- KG 常時のジオテキスタイルの必要引張力の合計に対する 増加係数 = 0.2142
- γ まの単位体積重量 = 15.800 (kN/m³)
- LSmax : のり肩部から着目点までの水平距離 = 2.088 (m)
- H1 : 着目点における嵩上げ盛土高さ = 0.327 (m)
- w1 (素 嵩上げ 盛土荷重 (kN/m²)
 - w1 = γ H1 = 5.165 (kN/m²)

ジオテキスタイルの敷設間隔(m)

w2 深さhにおける活荷重またはその他の載荷重による鉛直荷重 (kN/m²)

位置	h	V	v	w2	Т	TA	材料	判
番号	(m)	(m)	(m)	(kN/m^2)	(kN/m)	(kN/m)	No	定
5	0. 700	0.700	0.700	0.000	2. 433	22.000	1	0
4	1.900	1,200	1.200	0.000	9.045	22,000	1	0
3	3. 100	1.200	1.200	0. 000	13.918	22.000	1	0
2	4. 300	1. 200	1, 200	0.000	18, 792	30,000	2	0
1	5. 500	1, 200	1.200	0.000	23. 666	30,000	2	0

3.3 ジオテキスタイルの敷設長の計算

【ジオテキスタイルと土の摩擦係数が引抜き試験などで求められない場合】

 $L = Ls + Le = Ls + \frac{2(\alpha_{1c} + \alpha_{2}\sigma_{v}tan\phi)}{2(\alpha_{1c} + \alpha_{2}\sigma_{v}tan\phi)}$

【ジオテキスタイルと土の摩擦係数が引抜き試験などで求められている場合】

$$L = Ls + Le = Ls + \frac{FsT}{2(c*+\sigma vtan\phi*)}$$

ここに、L 各段の必要敷設長(m)

- Ls 各段ののり面から Σ Treq が最大となるすべり線までの水平距離(m)
 - Le 各段のジオテキスタイルの必要定着長 ≥ 1.0 (m)
 - σv :各段のジオテキスタイルの定着部に作用する鉛直力 (kN/m²) $\sigma v = \gamma h + w1$
 - w1 満上げ盛土荷重 = 5.165 (kN/m²)
 - α1 土とジオテキスタイルの摩擦に関する補正係数
 - α2 "
 - c 土の粘着力(kN/m²)
 - φ土のせん断抵抗角(°)
 - c* 土とジオテキスタイルの見かけの粘着力(kN/m²)

 - Fs 引抜きに対する安全率 = 2.00
 - 「深さhにおけるジオテキスタイルに発生する引張力(kN/m)

位置	h	σv	т	Ls	Le	L	教設長
番号	(m)	(kN/m²)	(kN/m)	(m)	(m)	(m)	L (m)
5	0, 700	16.225	2. 433	2.059	1.000	3, 059	4, 700
4	1.900	35. 185	9, 045	2.062	1.000	3.062	4. 700
3	3, 100	54.145	13, 918	1.816	1.000	2.816	4. 700
2	4, 300	73.105	18. 792	1. 223	1.000	2. 223	4. 700
1	5.500	92.065	23.666	0.000	1.000	1.000	4, 700

初期敷設長 = 3.100 (m)

Т

注: 敷設長は外的安定の検討および全体安定の検討を考慮した長さを表示

4. 内的安定の検討【地震時の場合】

- 4.1 地震時における必要引張力の合計が最大となるすべり円弧の算定
 - 4.1.1 計算条件

・最下層盛土ののり尻のポイントを通る円弧とする。

4.1.2 必要引張力の合計が最大となる補強土壁の円弧すべりの計算式

 $\Sigma \operatorname{TreqE} = \Sigma \operatorname{Treq} + \varDelta t H$ MDE - MRE ΣKGγzA $\Delta t = -$ RΣA ΣΑ $A = b \cdot \tan \theta \left(\cos \theta + \sin \theta \tan \phi \right)$ 2Σ Treq KG = - γH^2 ここに、ΣTreqE 地震時のジオテキスタイルの必要引張力の合計(kN/m) Σ Treq 地震時の円弧すべり形状における常時のジオテキスタイルの 必要引張力の合計 (kN/m) KG Σ Treq に対する増加係数 Δt 📑 地震力に起因する単位深さ当りのジオテキスタイルの必要引張力 (kN/m²) н 補強土壁の高さ(m) - 地震時におけるすべり土塊の滑動モーメント (kN·m/m) MDE $MDE = \Sigma (RWsin\alpha + khWyG)$ MRE $MRE = R \Sigma \{ (W\cos\alpha - khW\sin\alpha) \tan\phi \}$ W. 分割片の土塊重量 (kN/m) Y 土の単位体積重量(kN/m³) 土のせん断抵抗角(゜) Φ 合分割片で切られたすべり線の中点とすべり円中心を結ぶ α 直線と鉛直線とのなす角度(゜) θ - ジオテキスタイル位置でのすべり線の交点とすべり円中心を結ぶ 直線と鉛直線とのなす角度(゜) 各分割片で切られたすべり線の中点の盛土天端からの深さ(m) z b) 分割片の幅(m) R すべり円弧の半径(m)

kb 設計水平震度 = 0.20

yG 円弧中心から分割片重心までの距離(m)

4.1.3 必要引張力の合計が最大となる円弧すべり形状

5m:

4.1.4 必要引張力の合計一覧表

ΣːreqE (kN/m)		円中心X座標								
		-6.30m	-5, 80m	-5.30m	-4. 80m	-4.30m	-3. 80m	-3. 30m		
Ħ	12, 70m	83. 032	83. 232	83, 001	82. 267	80, 945	78, 963	76. 222		
#	12. 20m	82. 699	83. 203	83. 274	82, 863	81.865	80. 207	77. 787		
心	11. 70m	82. 106	82, 931	83. 334	83, 251	82. 604	81. 289	79, 213		
Y	11. 20m	81, 209	82. 379	83, 136	83. 406	83, 128	82. 184	80. 480		
座	10. 70m	79, 985	81, 493	82, 635	83, 298	83, 395	82. 864	81.555		
樏	10. 20m	78. 390	80. 270	81.776	82. 862	83, 394	83. 276	82. 408		
	9. 70m	76. 341	78, 622	80. 551	82. 044	83, 039	83. 393	82. 991		

4.1.5 必要引張力の合計が最大となるすべり円弧の抽出

項目	記号	単位	地震時
引張力の最大値	ΣTreqE	kN/m	83. 406
常時の引張力の合計	ΣTreq	kN/m	42. 383
地震力に起因する 引張力	⊿t	-	7. 459
設計水平農度	kh		0. 200
抵抗モーメント	MRC MRF MRE	kN•m/m	0. 000 952. 067 952. 067
起動モーメント	MDE	kN+m/m	2059. 830
円中心×座標 ×座標	X o Y o	m	-4. 800 11. 200
半径	R	m	12, 185
增加係数	KG	_ ,,	0. 177

4.2 ジオテキスタイルの引張強さの照査

4.2.1 ジオテキスタイルの設計引張強さ

$TAE = \lambda TA$

.	T ma:	<
IA =	For FD	FC FB
ここに,	TAE	ジオテキスタイルの地震時設計引張強さ(kN/m)
	TA	:ジオテキスタイルの常時設計引張強さ(kN/m)
	λ	: ジオテキスタイルの耐震設計用引張強さの常時設計用引張強さに対する
		割増し係数 = 1.50
	Tmax	:ジオテキスタイルの最大引張強さ(kN/m)
	Fcr	: クリープを考慮した材料安全率
	FD	: 耐久性を考慮した材料安全率
	FC	:施工中の損傷を考慮した材料安全率
	F8	: 接合部の強度低下を考慮した材料安全率

ſ	材		-	117		Timax	材	料子	之 全	率	TA	T AE
	料 No	名	称	規	풤	(kN/m)	Fcr	FD	FC	FΒ	(kN/m)	(kN/m)
Ī	1	ADEAM		HG-36		34, 000	1.54	1.00	1.00	1.00	22, 000	33, 000
Ī	2	ADEAM		HG-50		47.000	1.54	1,00	1.00	1.00	30,000	45.000

4.2.2 その他荷重の分布形状:その他荷重なし

4.2.3 ジオテキスタイルの引張強さの照査

 $TE = v \{ KG(\gamma h + w1' + w2) + \Delta t \} \leq TAE$

ここに、TE 深さらにおけるジオテキスタイルに発生する引張力 (kN/m)

- TAE ジオテキスタイルの地震時設計引張強さ (kN/m)
- h ジオテキスタイルの盛土天端からの敷設深さ(m)
- v 深さhにおけるジオテキスタイルの分担範囲(m)
- KG 地震時の円弧すべり形状における常時のジオテキスタイルの 必要引張力の合計に対する増加係数 = 0.1774
- γ 土の単位体積重量 = 15.800 (kN/m³)
- LSEmax のり肩部から着目点までの水平距離 = 3.770 (m)
- H1 : 着目点における嵩上げ盛土高さ = 1.261 (m)
- w1' 常常上げ盛土荷重 (kN/m²)
 - $w1' = \gamma H1' = 19.924 (kN/m^2)$
- w2 深さトにおける活荷重またはその他の載荷重による鉛直荷重(kN/m²)
- ∨ ジオテキスタイルの敷設間隔(m)

位置	h	V	v	w2	ΤE	TAE	材料	判
番号	(m)	(m)	(m)	(kN/m²)	(kN/m)	(kN/m)	No	定
5	0, 700	0, 700	0, 700	0.000	9,068	33,000	1	0
4	1.900	1. 200	1,200	0.000	19.580	33, 000	1	0
3	3. 100	1. 200	1.200	0,000	23, 615	33.000	1	0
2	4. 300	1.200	1, 200	0.000	27.650	45.000	2	0
1	5, 500	1,200	1.200	0,000	31.685	45.000	2	0

4.3 ジオテキスタイルの敷設長の計算

【ジオテキスタイルと土の摩擦係数が引抜き試験などで求められない場合】

 $L = Ls + Le = Ls + \frac{2(\alpha_1c + \alpha_2\sigma_1 \tan \phi)}{2(\alpha_1c + \alpha_2\sigma_1 \tan \phi)}$

【ジオテキスタイルと土の摩擦係数が引抜き試験などで求められている場合】

$$L = Ls + Le = Ls + \frac{FsT}{2 (c*+\sigma v tan \phi*)}$$

ここに、L 各段の必要敷設長(m)

- Ls 各段ののり面から Σ Treq が最大となるすべり線までの水平距離(m)
 - Le :各段のジオテキスタイルの必要定着長 ≧ 1.0 (m)
- σv :各段のジオテキスタイルの定着部に作用する鉛直力 (kN/m²) $\sigma v = \gamma h + w 1'$

11

- w1' 嵩上げ盛土荷重 = 19.924 (kN/m²)
- α1 土とジオテキスタイルの摩擦に関する補正係数
- c 土の粘着力(kN/m²)
- c* 土とジオテキスタイルの見かけの粘着力(kN/m²)
- φ* 土とジオテキスタイルの見かけのせん断抵抗角(°)
- Fs 引抜きに対する安全率 = 1.20

深さらにおけるジオテキスタイルに発生する引張力(kN/m)

位置	h	σv	TE	Ĺ\$	Ĺe	L	敷設長
番号	(m)	(kN/m²)	(kN/m)	(m)	(m)	(m)	上 (m)
5	0.700	30.984	9,068	3. 649	1.000	4.649	4. 700
4	1.900	49.944	19.580	3. 285	1.000	4. 285	4. 700
3	3, 100	68, 904	23. 615	2.669	1.000	3, 669	4, 700
2	4, 300	87.864	27.650	1.683	1.000	2. 683	4. 700
1	5.500	106.824	31.685	0.000	1.000	1,000	4. 700

初期敷設長 = 4.700 (m)

α2

Т

5. 外的安定の検討【常時の場合】

5.1 仮想的な擁壁に作用する荷重

10m: _____

L=5000

5.1.1 試行くさび法による背面土圧

D . –	W2·sin($\omega - \phi s - c s \cdot L s \cdot cos \phi s = 0.000 \ (\mu M/m)$
PA =	co	$s(\omega - \phi s + \alpha 0 - \delta)$
a ale,	PA	背面土压合力
	W2	:土くさびの自重(上載荷重含む) = W+Wq = 5.687 (kN/m)
	w	: 土くさびの自重 = 5.687 (kN/m)
	Wq	:裏込め土上の載荷重 ≕ 0.000 (kN/m)
	ω	:すべり線と水平面のなす角度 = 66.199(°)
	α0	:壁面と鉛直面のなす角 = 21.801 (°)
	γs) 赛込め土の単位体積重量 = 15.8 (kN/m²)
	φs	: 裏込め土のせん断抵抗角 = 28.6(゜)
	C 5	: 裏込め土の粘着力 = 19.20 (kN/m²)
	δ	:仮想背面の壁面摩擦角 = 28.6 (゜)
	LS	:すべり線の長さ = 4.357 (m)
	ho	: すべり基準高さ = 0.000 (m)
	z	:粘着高 = 4.093 (m)
		$z = (2 c s/\gamma s) \cdot tan(45^{\circ} + \phi s/2)$
	R	:すべり面に作用する反力 = -77.254 (kN/m)
	PAH	:土圧Pの水平方向成分 = $PA \cdot \cos(\delta - \alpha 0) = 0.000$ (kN/m)
	PAV	:土圧Pの鉛直方向成分 = PA·sin($\delta - \alpha$ 0) = 0.000 (kN/m)
	Υp	:X方向土圧作用位置 = 6.067 (m)
	Хp	: Y方向土圧作用位置 = 2.667 (m)

÷

5.1.2 仮想的な擁壁の底面に作用する荷重計算

	鉛直荷量	作用位置	モーメント	水平荷重	作用位置	モーメント
作用荷重	V	X	Mx	н	Y	My
	(kN/m)	(m)	(kN·m/m)	(kN/m)	(m)	(kN·m/m)
仮想擁壁の自重	503.625	3. 980	2004. 296	0.000	0.000	0.000
土圧	0.000	6.067	0.000	0.000	2. 667	0, 000
合 計	503.625	-	2004. 296	0.000		0.000
仮想擁壁上の活荷重	0.000		· · · · · ·	_	_	

5.2 滑動に対する安定の検討

$$Fs = \frac{c \cdot LB + \mu \cdot \Sigma V}{\Sigma H} \geq Fsa$$

ここに、Fs 滑動に対する安全率

- Fsa 📑 滑動に対する設計安全率 = 1.50
- Σ V 仮想的な擁壁の底面における全鉛直荷重 = 503.625 (kN/m)
- ΣH 仮想的な擁壁の底面における全水平荷重 = 0.000 (kN/m)
- LB 仮想的な擁壁の底面幅 = 5.000 (m)
- c 仮想的な擁壁の底面と基礎地盤との粘着力(kN/m²)
- µ 仮想的な擁壁の底面と基礎地盤との摩擦係数
- α: 補正係数 = 0.0 [砂または砂質土(φ 材)]

0.5 [砂質土(c φ 材)または粘性土]

: 補正係数 = 1.0

α2

с2

- φ2 基礎地盤のせん断抵抗角 = 36.3 (°)
- c1 盛土材料の粘着力 = 19.20 (kN/m²)
 - : 基礎地盤の粘着力 = 215.00 (kN/m²)

項目	с	μ	Fs	判定
盛土材料	o 1 = 19.20	$\tan \phi 1 = 0.545$	00	0
基礎地盤	$c_2 = 215.00$	$\tan \phi 2 = 0.735$	~	0
盛土材料とジオテキスタイル	$\alpha_{1c1} = 9.60$	$\alpha 2 \tan \phi 1 = 0.545$	00	0
基礎地盤とジオテキスタイル	α i c 2 = 107.50	$\alpha 2 \tan \phi 2 = 0.735$	00	0

5.3 転倒に対する安定の検討

5.3.1 仮想的な擁壁のつま先から合力Rの作用点までの距離

d =
$$\frac{\Sigma MR - \Sigma Mo}{\Sigma V}$$
 = 3.980 (m)
ここに、d 仮想的な擁壁のつま先から合力Rの作用点までの距離 (m)
 ΣMR つま先まわりの抵抗モーメント = 2004.296 (kN·m/m)

ΣMo つま先まわりの転倒モーメント = 0.000 (kN·m/m)

ΣV 仮想的な擁壁の底面における全鉛直荷重 = 503.625 (kN/m)

5.3.2 仮想的な擁壁底面中央からの偏心距離

e =
$$\frac{LB}{2}$$
 - d = -1.480
e $\leq \frac{LB}{6}$ = 0.833 ··· 満足している
ここに、 e 仮想的な擁壁底面中央からの偏心距離 (m)
d 仮想的な擁壁のつま先から合力尺の作用点までの距離 = 3.980 (m)
LB 仮想的な擁壁の底面幅 = 5.000 (m)

5.4 支持力(盛土直下)に対する安定の検討

5.4.1 仮想的な擁壁の基礎地盤面に作用する鉛直地盤反力度

5.4.2 基礎地盤の極限支持力度

,

$$qu = \alpha \cdot \kappa \cdot c \cdot Nc \cdot Sc + \kappa \cdot q \cdot Nq \cdot Sq + (1/2) \cdot \gamma 1 \cdot \beta \cdot Be \cdot Nr \cdot Sr = 6500, 63 (kN/m2)$$

- q 上載荷重 = $\gamma 2 \cdot Df = 0.00 (kN/m^2)$
- γ1 支持地盤の土の単位体積重量 = 20.5 (kN/m³)
- γ2 根入れ地盤の土の単位体積重量 = 20.5 (kN/m³)
- Df 基礎の有効根入れ深さ = 0.000 (m)
- α, β 基礎の形状係数 = 1.0
- Be 基礎の有効載荷幅 = LB = 5.000 (m)
- κ 根入れ効果に対する割増し係数
 - $\kappa = 1 \pm 0.3 \cdot Df' / Be = 1.000$
- Df : 支持地盤と同程度良質な地盤に根入れした深さ = 0.000 (m)

tan 8 荷重の傾斜 = 0.000

- Nc 支持力係数 = 52.040
- Nq 支持力係数 = 39.230
- Nr 支持力係数 = 43.620
- Sc 支持力係数の寸法効果に関する補正係数 = (c*)^λ = 0.464
- Sq 支持力係数の寸法効果に関する補正係数 = (q^{*})^v = 1.000
- Sr 支持力係数の寸法効果に関する補正係数 = (B⁺)[#] = 0.585

 λ, ν, μ 係数 = -1/3 c c*=c/co = 21.500 CCC, 1≤c*≤10 ∴ c* = 21.500 co 10 (kN/m²) q q*=q/qo = 0.000 CCCC, 1≤q*≤10 ∴ q* = 1.000 qo 10 (kN/m²)

B'
$$B^* = Be/Bo = 5,000$$
 $CCIC, 1 \le B^*$ $B^* = 5,000$
Bo 1.0 (m)

5.4.3 基礎地盤の支持力検討

6. 外的安定の検討【地震時の場合】

10m: [-

6.1 仮想的な擁壁に作用する荷量

L=5000